Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.347
Filtrar
1.
Atherosclerosis ; : 117546, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38692978

RESUMO

The worldwide prevalence of individuals with an elevated body weight has increased steadily over the past five decades. Billions of research dollars have been invested to improve our understanding of the causes and consequences of having an elevated body weight. All this knowledge has, however, failed to influence populational body weight trajectories of most countries around the world. Research on the definition of "obesity" has also evolved. Body mass index (BMI), the most commonly used tool to make its diagnosis, has major limitations. In this review article, we will highlight evidence from observational studies, genetic association studies and randomized clinical trials that have shown the remarkable inter-individual differences in the way humans store energy as body fat. Increasing evidence also suggests that, as opposed to weight inclusive, lifestyle-based approaches, weight-centric approaches advising people to simply eat less and move more are not sustainable for most people for long-term weight loss and maintenance. It is time to recognize that this outdated approach may have produced more harm than good. On the basis of pathophysiological, genetic and clinical evidence presented in this review, we propose that it may be time to shift away from the traditional clinical approach, which is BMI-centric. Rather, emphasis should be placed on actionable lifestyle-related risk factors aiming at improving overall diet quality and increasing physical activity level in the general population.

2.
Front Physiol ; 15: 1412956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725565
3.
Endocrinology ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712392

RESUMO

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-HSD1, an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anti-contractile function of this tissue.

4.
J Anim Sci ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712478

RESUMO

A study of the mechanism of and metabolic regulation of brown adipose tissue (BAT) production is important for improving the survival rate of young animals. In the present study, we observed that perirenal adipose tissue in goats undergoes a rapid BAT whitening after birth. However, the underlying regulatory mechanism remains unknown. To address this further, we investigated the role of miRNAs in regulating the whitening process of BAT in goats. First, we identified the dynamic expression profiles of miRNAs during the whitening of BAT in Dazu black goat using RNA-seq. We identified a total of 1374 miRNAs, including 408 exist miRNAs, 693 known miRNAs, and 273 novel miRNAs. By analysis of the differentially expressed miRNAs (DE miRNAs), we found that 102 highly expressed miRNAs, including chi-miR-144-3p, chi-miR-144-5p, chi-miR-378-5p, chi-miR-136-3p, chi-miR-381, chi-miR-323b, chi-miR-1197-3p, chi-miR-411b-3p, and chi-miR-487a-3p, were enriched in BAT. In addition, 60 highly expressed miRNAs, including chi-miR-184, chi-miR-193a, chi-miR-193b-3p, chi-let-7c-5p, and chi-let-7e-5p, were enriched in white fat-like tissue. An analysis of miRNAs that were linearly down-regulated (profile 0) or linearly up-regulated (profile 19) over the D0 - D28 period found that these DE miRNAs were mainly enriched in the Hippo signaling pathway, Cytokine-cytokine receptor interactions, and the TGF-beta signaling pathway. Furthermore, we confirmed that chi-let-7e-5p promotes the proliferation and differentiation of brown adipocytes. These results should facilitate a better understanding of the molecular regulation of miRNAs involved in BAT whitening in goats.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38713332

RESUMO

Epicardial adipose tissue (EAT) deposition has been long associated with heart weight. However, recent research has failed to replicate this association. We aimed to determine the association of EAT volume with heart weight in post-mortem cases and identify potential confounding variables. EAT volume derived from post-mortem computed tomography (PMCT) and heart weight were measured in post-mortem cases (N = 87, age: 56 ± 16 years, 28% female). Cases with hypertrophied heart weights (N = 44) were determined from reference tables. Univariable associations were tested using Spearman correlation and simple linear regression. Independence was determined with stepwise regression. In the total cohort, EAT volume (median 66 ± 45 cm3) was positively associated with heart weight (median 435 ± 132 g) at the univariable level (r = 0.6, P < 0.0001) and after adjustment for age, female sex, and various body size metrics (R2 adjusted = 0.41-0.57). Median EAT volume was 1.9-fold greater in cases with hypertrophic hearts (P < 0.0001) but with considerably greater variability, especially in cases with extreme EAT volume or heart weight. As such, EAT volume was not associated with heart weight in hypertrophic cases, while a robust independent association was found in non-hypertrophic cases (R2 adjusted = 0.62-0.86). EAT mass estimated from EAT volume found that EAT comprised approximately 13% of overall heart mass in the total cases. This was significantly greater in cases with hypertrophy (median 15.5%; range, 3.6-36.6%) relative to non-hypertrophied cases (12.5%, 3.3-24.3%) (P = 0.04). EAT volume is independently and positively associated with heart weight in post-mortem cases. Excessive heart weight significantly confounded this association.

6.
Genes Nutr ; 19(1): 8, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702594

RESUMO

BACKGROUND: Evidences have shown that obesity is influenced by various factors, including various hormones such as thyroid hormones and the body's metabolism rate. It seems that practical solutions such as weight loss diets and common drugs can affect these potential disorders. In this study, we investigate one of these common drugs, N-Acetylcysteine (NAC), on expressions of UCP1 and factors related to thyroid function in adults with obesity. METHODS AND ANALYSIS: The current investigation was carried out as a randomized clinical trial (RCT) including 43 adults with obesity who were potential candidates for bariatric surgery. These individuals were randomly divided into two groups: 600 mg of NAC (n = 22) or placebo (n = 21) for a duration of 8 weeks. Visceral adipose tissue was utilized in the context of bariatric surgery to investigate the gene expression of UCP1 and thyroid function. Polymerase chain reaction (PCR) was performed in duplicate for UCP1, DIO2, DIO3, THRα and ß, and 18s RNA (as an internal control) using the provided instructions to investigate the expression of the respective genes. RESULTS: Our findings revealed that after 8 weeks compared to placebo, NAC caused a significant decrease in the expression of the DIO3 gene as one of the genes related to thyroid function and metabolism. However, regarding other related genes, no statistically significant was found (despite the increase in UCP1, DIO2, and THRα expression and decrease in THRß expression). In addition, after adjustment of possible confounders, no significant effect was observed on anthropometric factors and serum levels of thyroid hormones. CONCLUSION: The results of this study indicate that, following an 8-week period, NAC effectively decreases the expression of the DIO3 gene in the visceral fat tissue, in comparison to the placebo.

7.
Front Physiol ; 15: 1368542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706946

RESUMO

Background: Many people infected with COVID-19 develop myocardial injury. Epicardial adipose tissue (EAT) is among the various risk factors contributing to coronary artery disease. However, its correlation with myocardial injury in patients diagnosed with COVID-19 remains uncertain. Methods: We examined myocardial biomarkers in population affected by COVID-19 during the period from December 2022 to January 2023. The patients without myocardial injury were referred to as group A (n = 152) and those with myocardial injury were referred to as group B (n = 212). Results: 1) The A group and the B group exhibitedstatistically significant differences in terms of age, TC, CRP, Cr, BUN, LDL-C, IL-6, BNP, LVEF and EAT (p < 0.05). 2) EAT volumehad a close relationship with IL-6, LDL-C, cTnI, and CRP (p < 0.05); the corresponding correlation coefficient values were 0.24, 0.21, 0.24, and 0.16. In contrast to those with lower EAT volume, more subjects with a higher volume of EAT had myocardial injury (p < 0.05). Regression analysis showed that EAT, LDL-C, Age and Cr were established as independent risk variables for myocardial injury in subjects affected by COVID-19. 3) In COVID-19 patients, the likelihood of myocardial injury rised notably as EAT levels increase (p < 0.001). Addition of EAT to the basic risk model for myocardial injury resulted in improved reclassification. (Net reclassification index: 58.17%, 95% CI: 38.35%, 77.99%, p < 0.001). Conclusion: Patients suffering from COVID-19 with higher volume EAT was prone to follow myocardial injury and EAT was an independent predictor of heart damage in these individuals.

8.
Sci Rep ; 14(1): 9960, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693222

RESUMO

The pathogenesis of aortic dissection (AD), an aortic disease associated with high mortality, involves significant vascular inflammatory infiltration. However, the precise relationship between perivascular adipose tissue (PVAT) and aortic dissection remains incompletely understood. The objective of this study is to investigate the role of PVAT inflammation in the pathogenesis of aortic dissection and identify novel therapeutic targets for this disease. The mouse model of aortic dissection was established in this study through intraperitoneal injection of Ang II and administration of BAPN in drinking water. Additionally, control groups were established at different time points including the 2-week group, 3-week group, and 4-week group. qPCR and immunohistochemistry techniques were employed to detect the expression of inflammatory markers and RUNX1 in PVAT surrounding the thoracic aorta in mice. Additionally, an aortic dissection model was established using RUNX1 knockout mice, and the aforementioned indicators were assessed. The 3T3-L1 cells were induced to differentiate into mature adipocytes in vitro, followed by lentivirus transfection for the knockdown or overexpression of RUNX1. The study aimed to investigate the potential cell-to-cell interactions by co-culturing 3T3-L1 cells with A7r5 or RAW264.7 cells. Subsequently, human aortic PVAT samples were obtained through clinical surgery and the aforementioned indicators were detected. In comparison to the control group, the aortic dissection model group exhibited decreased expression of MMP-2 and NF-κB in PVAT, while TNF-α and RUNX1 expression increased. Suppression of RUNX1 expression resulted in increased MMP-2 and NF-κB expression in PVAT, along with decreased TNF-α expression. Overexpression of RUNX1 upregulated the expression levels of NF-Κb, MMP-2, and TNF-α in adipocytes, whereas knockdown of RUNX1 exerted an opposite effect. Macrophages co-cultured with adipocytes overexpressing RUNX1 exhibited enhanced CD86 expression, while vascular smooth muscle cells co-cultured with these adipocytes showed reduced α-SMA expression. In human samples, there was an increase in both RUNX1 and MMP-2 expression levels, accompanied by a decrease in TNF-α and NF-Κb expression. The presence of aortic dissection is accompanied by evident inflammatory alterations in the PVAT, and this phenomenon appears to be associated with the involvement of RUNX1. It is plausible that the regulation of PVAT's inflammatory changes by RUNX1/NF-κB signaling pathway plays a role in the pathogenesis of aortic dissection.


Assuntos
Tecido Adiposo , Dissecção Aórtica , Subunidade alfa 2 de Fator de Ligação ao Core , Modelos Animais de Doenças , Inflamação , NF-kappa B , Animais , Humanos , Masculino , Camundongos , Células 3T3-L1 , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais
9.
Biologicals ; 86: 101767, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704951

RESUMO

Decellularization is a novel technique employed for scaffold manufacturing, as a strategy for skeletal muscle (SM) tissue engineering applications. However, poor decellularization efficacy is still a problem for the use of decellularized scaffolds as truly biocompatible biomaterials. For recellularization, adipose-derived stem cells (ASCs) are a good option, due to their immunomodulatory and pro-regenerative capacity, but few studies have described their combination with muscle-decellularized matrices (mDMs). This work aimed to evaluate the efficiency of four multi-step decellularization protocols to produce mDMs and to investigate in vitro biocompatibility with ASCs. Here, we described the different efficacies of muscle decellularization methods, suggesting the need for stricter standardization of the method, considering the large range of applications in SM tissue engineering, which is also a promising platform for preclinical studies with rat disease models using autologous cells.

10.
Ecotoxicol Environ Saf ; 278: 116423, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705039

RESUMO

Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.

11.
Adipocyte ; 13(1): 2339418, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38706095

RESUMO

A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.


Assuntos
Proteína ADAM10 , Tecido Adiposo , Secretases da Proteína Precursora do Amiloide , Dieta Hiperlipídica , Resistência à Insulina , Proteínas de Membrana , Camundongos Knockout , Obesidade , Fenótipo , Animais , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Dieta Hiperlipídica/efeitos adversos , Camundongos , Secretases da Proteína Precursora do Amiloide/metabolismo , Tecido Adiposo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Obesidade/metabolismo , Obesidade/etiologia , Masculino , Inflamação/metabolismo , Adipócitos/metabolismo
12.
PeerJ ; 12: e17071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711623

RESUMO

Adipose tissue in the human body occurs in various forms with different functions. It is an energy store, a complex endocrine organ, and a source of cells used in medicine. Many molecular analyses require the isolation of nucleic acids, which can cause some difficulties connected with the large amount of lipids in adipocytes. Ribonucleic acid isolation is particularly challenging due to its low stability and easy degradation by ribonucleases. The study aimed to compare and evaluate five RNA and DNA isolation methods from adipose tissue. The tested material was subcutaneous porcine adipose tissue subjected to different homogenization methods and RNA or DNA purification. A mortar and liquid nitrogen or ceramic beads were used for homogenization. The organic extraction (TriPure Reagent), spin columns with silica-membrane (RNeasy Mini Kit or High Pure PCR Template Preparation Kit), and the automatic MagNA Pure system were used for the purification. Five combinations were compared for RNA and DNA isolation. Obtained samples were evaluated for quantity and quality. The methods were compared in terms of yield (according to tissue mass), purity (A260/280 and A260/230), and nucleic acid degradation (RNA Integrity Number, RIN; DNA Integrity Number, DIN). The results were analyzed statistically. The average RNA yield was highest in method I, which used homogenization with ceramic beads and organic extraction. Low RNA concentration didn't allow us to measure degradation for all samples in method III (homogenization with ceramic beads and spin-column purification). The highest RNA quality was achieved with method IV using homogenization in liquid nitrogen and spin column purification, which makes it the most effective for RNA isolation from adipose tissue. Required values of DNA yield, purity, and integrity were achieved only with spin column-based methods (III and IV). The most effective method for DNA isolation from adipose tissue is method III, using spin-columns without additional homogenization.


Assuntos
Tecido Adiposo , DNA , RNA , Animais , RNA/isolamento & purificação , RNA/genética , Suínos , DNA/isolamento & purificação , DNA/genética , Tecido Adiposo/metabolismo
13.
JCI Insight ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713526

RESUMO

Thermogenesis in beige/brown adipose tissues can be leveraged to combat metabolic disorders such as type 2 diabetes and obesity. The complement system plays pleiotropic roles in metabolic homeostasis and organismal energy balance with canonical effects on immune cells and non-canonical effects on non-immune cells. The adipsin/C3a/C3aR1 pathway stimulates insulin secretion and sustains pancreatic beta cell mass. However, its role in adipose thermogenesis has not been defined. Here, we show that male Adipsin/Cfd knockout mice exhibit increased energy expenditure and white adipose tissue (WAT) browning. In addition, male adipocyte-specific C3aR1 knockout mice exhibit enhanced WAT thermogenesis and increased respiration. In stark contrast, female adipocyte-specific C3aR1 knockout mice display decreased brown fat thermogenesis and are cold intolerant. Female mice express lower levels of Adipsin in thermogenic adipocytes and adipose tissues than males. C3aR1 is also lower in female subcutaneous adipose tissue than males. Collectively, these results reveal sexual dimorphism in the adipsin/C3a/C3aR1 axis in regulating adipose thermogenesis and defense against cold stress. Our findings establish a newly discovered role of the alternative complement pathway in adaptive thermogenesis and highlight sex-specific considerations in potential therapeutic targets for metabolic diseases.

14.
JCI Insight ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713533

RESUMO

Activation of brown adipose tissue (BAT) thermogenesis increases energy expenditure and alleviates obesity. Here we discover that histone methyltransferase suppressor of variegation 4-20 homolog 2 (Suv420h2) expression parallels that of Ucp1 in brown and beige adipocytes and that Suv420h2 knockdown significantly reduces, whereas Suv420h2 overexpression significantly increases Ucp1 levels in brown adipocytes. Suv420h2 knockout (H2KO) mice exhibit impaired cold-induced thermogenesis and are prone to diet-induced obesity. In contrast, mice with specific overexpression of Suv420h2 in adipocytes display enhanced cold-induced thermogenesis and are resistant to diet-induced obesity. Further study shows that Suv420h2 catalyzes H4K20 trimethylation at eukaryotic translation initiation factor 4E-binding protein 1 (4e-bp1) promoter, leading to down-regulated expression of 4e-bp1, a negative regulator of the translation initiation complex. This in turn up-regulates PGC1α protein levels, which is associated with increased expression of thermogenic program. We conclude that Suv420h2 is a key regulator of brown/beige adipocyte development and thermogenesis.

16.
Liver Int ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717072

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease globally. Non-alcoholic steatohepatitis (NASH) represents an extremely progressive form of NAFLD, which, without timely intervention, may progress to cirrhosis or hepatocellular carcinoma. Presently, a definitive comprehension of the pathogenesis of NAFLD/NASH eludes us, and pharmacological interventions targeting NASH specifically remain constrained. The aetiology of NAFLD encompasses a myriad of external factors including environmental influences, dietary habits and gender disparities. More significantly, inter-organ and cellular interactions within the human body play a role in the development or regression of the disease. In this review, we categorize the influences affecting NAFLD both intra- and extrahepatically, elaborating meticulously on the mechanisms governing the onset and progression of NAFLD/NASH. This exploration delves into progress in aetiology and promising therapeutic targets. As a metabolic disorder, the development of NAFLD involves complexities related to nutrient metabolism, liver-gut axis interactions and insulin resistance, among other regulatory functions of extraneous organs. It further encompasses intra-hepatic interactions among hepatic cells, Kupffer cells (KCs) and hepatic stellate cells (HSCs). A comprehensive understanding of the pathogenesis of NAFLD/NASH from a macroscopic standpoint is instrumental in the formulation of future therapies for NASH.

17.
Immunol Rev ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717136

RESUMO

It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38717362

RESUMO

Adipose tissue metabolism is actively involved in the regulation of energy balance. Adipose-derived stem cells (ASCs) play a critical role in maintaining adipose tissue function through their differentiation into mature adipocytes. This study aimed to investigate the impact of an obesogenic environment on the epigenetic landscape of ASCs and its impact on adipocyte differentiation and its metabolic consequences. Our results showed that ASCs from rats on a high-fat sucrose (HFS) diet displayed reduced adipogenic capacity, increased fat accumulation, and formed larger adipocytes compared to the control (C) group. Mitochondrial analysis revealed heightened activity in undifferentiated ASC-HFS, but decreased respiratory and glycolytic capacity in mature adipocytes. The HFS diet significantly altered the H3K4me3 profile in ASCs on genes related to adipogenesis, mitochondrial function, inflammation, and immunomodulation. After differentiation, adipocytes retained H3K4me3 alterations, confirming upregulation of genes associated with inflammatory and immunomodulatory pathways. RNA-seq confirmed the upregulation of genes associated with inflammatory and immunomodulatory pathways in adipocytes. Overall, the HFS diet induced significant epigenetic and transcriptomic changes in ASCs, impairing differentiation and causing dysfunctional adipocyte formation.

19.
Bioact Mater ; 37: 533-548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689657

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used in therapy of ischemic heart disease. However, there are still remaining issues that limit the therapeutic efficacy, such as immune rejection and low retention of hiPSC-CMs. Human adipose mesenchymal stromal cells (hADSCs) have been reported to be able to regulate the immune response, promote angiogenesis and promote the maturation of hiPSC-CMs. In this study, we co-cultured these two types of cells on fiber scaffold made of biodegradable poly (D,L-lactic-co-glycolic acid) (PLGA) polymer for several days to develop a composited 3D cardiac tissue sheet. As expected, the cells formed 231.00 ± 15.14 µm thickness tissue, with improved organization, alignment, ECM condition, contractile ability, and paracrine function compared to culture hiPSC-CMs only on PLGA fiber. Furthermore, the composited 3D cardiac tissue sheet significantly promoted the engraftment and survival after transplantation. The composited 3D cardiac tissue sheet also increased cardiac function, attenuated ventricular remodeling, decreased fibrosis, and enhanced angiogenesis in rat myocardial infarction model, indicating that this strategy wound be a promising therapeutic option in the clinical scenario.

20.
Front Cardiovasc Med ; 11: 1380906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689862

RESUMO

Background: Hypertension (HTN) presents a significant global public health challenge with diverse causative factors. The accumulation of visceral adipose tissue (VAT) due to a high-fat diet (HFD) is an independent risk factor for HTN. While various studies have explored pathogenic mechanisms, a comprehensive understanding of impact of VAT on blood pressure necessitates bioinformatics analysis. Methods: Datasets GSE214618 and GSE188336 were acquired from the Gene Expression Omnibus and analyzed to identify shared differentially expressed genes between HFD-VAT and HTN-VAT. Gene Ontology enrichment and protein-protein interaction analyses were conducted, leading to the identification of hub genes. We performed molecular validation of hub genes using RT-qPCR, Western-blotting and immunofluorescence staining. Furthermore, immune infiltration analysis using CIBERSORTx was performed. Results: This study indicated that the predominant characteristic of VAT in HTN was related to energy metabolism. The red functional module was enriched in pathways associated with mitochondrial oxidative respiration and ATP metabolism processes. Spp1, Postn, and Gpnmb in VAT were identified as hub genes on the pathogenic mechanism of HTN. Proteins encoded by these hub genes were closely associated with the target organs-specifically, the resistance artery, aorta, and heart tissue. After treatment with empagliflozin, there was a tendency for Spp1, Postn, and Gpnmb to decrease in VAT. Immune infiltration analysis confirmed that inflammation and immune response may not be the main mechanisms by which visceral adiposity contributes to HTN. Conclusions: Our study pinpointed the crucial causative factor of HTN in VAT following HFD. Spp1, Postn, and Gpnmb in VAT acted as hub genes that promote elevated blood pressure and can be targets for HTN treatment. These findings contributed to therapeutic strategies and prognostic markers for HTN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...